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Abstract
If we are to understand how we can build artificial intelligence machines that are able to
organically process and acquire knowledge like humans do, we must first understand how
to teach a human intelligence system to model and learn generic concepts without resorting
to mechanistic hand-coding of such concepts. Such an achievement in human intelligence
is an important stride towards the realization of Minsky’s hypothetical “baby machine.”

Genesis is a story-understanding system that reads and analyzes stories in simple
English, as humans do. Genesis can recognize certain sequences of events as particular
manifestations of some user-defined concepts, such as revenge or physical retaliation.
However, both the structure and definition of these high-level concepts must be explicitly
provided by the user, and must be exactly matched using concept patterns against
sequences of events in a story. I propose that this paradigm is unlike how humans learn
such concepts, and instead, such concepts are learned by example, not by explicit
definition.

To introduce this organic, example-driven paradigm to Genesis, I have created
STUDENT, a system that ingests a small series of positive and negative examples of
concepts and builds an internal model for these concepts. By aligning similar examples of
concepts together, I have constructed refined concept patterns which encompass multiple,
different manifestations of the concepts, without requiring a human to explicitly define
them.

Adding this capability to Genesis enables it to learn concepts by example from a
teacher. This behavior emulates how maturing humans learn concepts. Achieving this
ability to emulate a human’s learning process for a new idea brings us one step closer to
modeling human intelligence and story understanding.

Thesis Supervisor: Patrick H. Winston
Title: Ford Professor of Artificial Intelligence and Computer Science
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Chapter 1

Humans Learn by Example

If I asked you to write down an exact definition of «assassination», or «revenge», could

you?

Maybe your definition of revenge would be something like:

revenge =⇒ X harms Y, so Y harms X (where X and Y are people)

This is a reasonable definition at first glance, but it lacks nuance. Some possible

considerations are expounded below:

◁ If X says something mean about Y, is that considered “harm”? If so, we need to

change our definition of «revenge» to qualify the scope of “harm”.

◁ If X slaps LY (Y’s lover) and consequently Y slaps X, is this retaliation on LY’s behalf

an example of revenge? If so, we need a way to incorporate relationship or common

interest into our definition of «revenge».

◁ If X says something mean about Y, then Y kills X, can this be attributed to revenge?

Y’s retaliation seems extreme, so perhaps this isn’t «revenge», but instead just Y

being insane. We need a way to recognize and forbid certain types of “harm”.

You could modify your original definition of «revenge», generalizing and specifizing

certain aspects of it to correctly account for each of the above situations. However, at what

point does this become mechanistic instead of illustrative? For every definition you write,

there’s a more correct and nuanced definition that hasn’t yet been written.

This dilemma suggests a case of “you know it when you see it”: a phenomenon
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illustrating that, though you perhaps can’t give an accurate definition of the concept, you

can still supply, affirm, or refute an example of it.

For most people, this is not an uncommon phenomenon. Have you ever been asked to

define the word “blue”? Or “and”? Or “expect”? It’s quite difficult to give a good definition

for any of these words. Sometimes, it is much easier for you to point to things that express

the quality—

“That car over there is blue!”

or, use the word in a sentence to illustrate its syntactic behavior—

“That car is big and red.”

or, give an example that highlights its semantic meaning—

“His car was much smaller than I expected.”

In each of these situations, instead of providing an intensional description of the

word’s meaning, you have given an ostensive definition by providing an example of the

word’s usage—because it was much easier that way. I codify this idea as the Principle of

Ostension.

Ostension: It is often easier to demonstrate an idea with examples rather than define it

explicitly.

Given how much humans communicate ideas to others via ostension, it only makes

sense that the examples are well-received: that is, that the ideas are learned effectively

from these ostensive definitions. Indeed, I claim that humans learn many things—words,

actions, attributes, concepts—in an example-driven manner. This is clearly seen in young

children. Young children do not learn...

◁ what a car is, or

◁ what friendship is, or

◁ what language is, or

◁ what blue is

...from a dictionary. Instead, young children learn these things by example, experience, and

exploration. This corollary to the Principle of Ostension is formalized in what I call the

Principle of Exemplar:
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Exemplar: Humans learn by experience rather than definition: ingesting examples is

easier to internalize than reading a definition.

The Principle of Exemplar is partially inspired by Minsky’s brief discussion of the

baby-machine, a theoretical machine that emulates an infant who acquires knowledge of

the world through experience (Minsky, 2006). Though Minsky is generally dismissive of

our current ability to develop a full baby-machine, I believe that STUDENT, which is built

with the Principle of Exemplar in mind, is a step in the right direction.

Unfortunately, it is not sufficient to motivate STUDENT’s development by appealing to

its ability to learn by example. After all, even deep neural networks learn by example—

albeit thousands or millions of them. The primary appeal to the Principle of Exemplar,

then, isn’t the ability to learn from examples ipso facto: it is the ability to learn from a

small number of examples. After all, human children don’t learn new concepts by being

fed millions of example sentences: they learn from just a few.

In any context of learning, there is always a student and a teacher. For example...

◁ The student might be a child learning about cars; or, a machine learning about stock

trends; or, a neural network learning about categorizing images.

◁ The teacher might be a parent describing embarrassment; or, a professor explaining

differential calculus; or, or a data scientist providing a database of images.

In any context of learning, care must be taken to select informative examples—though

the definition of “informative” may depend on the situation. If a student is learning about

Pyrrhic victory, the professor may select a passage from a book to demonstrate a case of

Pyrrhic victory. On the other hand, if a neural network is learning what a dog is, the data

scientist will likely provide many, many very similar pictures of (say) Golden Retrievers.

In any case, all provided examples should be accurate and discriminative.

When there are just a few examples, the teacher must take extra care to select

particularly informative examples. This is a perfectly acceptable compromise to not

relying on massive amounts of data: after all, the objective of this research is not to pursue

a system that can learn without an involved teacher—that would be ridiculous. The

objective is instead to properly emulate how humans learn in real life: with a few, targeted
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examples. This objective is formalized in the Principle of Quintessence.

Quintessence: Humans, and machines, can learn from a few, targeted examples chosen

by a cognizant teacher.

If we want an artificial intelligence system to properly emulate the human thought

process, it must be able to learn pursuant to the Principle of Quintessence. Winston

(Winston, 1970) and Klein (Klein, 2008), described later in Section 2.2, developed

algorithms that allowed us to embark on the long journey towards this goal, but I have

leveraged their work to bridge the large gap between atomic ideas and full-scale concepts:

The Genesis System (described in Section 2.1) is a story-understanding system that

can reason about concepts given their explicit definitions, but relies on the precision of

the definitions supplied by users. I have created a new system, STUDENT, which imbues

Genesis with the ability to learn concepts by a few, targeted examples provided by a teacher.

STUDENT is a system that...

1. Formalizes a hierarchical representation for concepts that emphasizes semantic

regularities among similar concepts;

2. Understands how to mutate one concept representation into another;

3. Quantifies the different types of mutations possible between similar concepts;

4. Reconciles differences between similar concepts and sentences;

5. Recognizes permissible sentences as manifestations of a concept, and rejects

forbidden sentences that are not manifestations of a concept; and,

6. Explains its actions and thought process when making decisions.

Consider the task of teaching a computer the meaning of «revenge». STUDENT can

quickly learn the meaning of «revenge» by analyzing a sequence of a few examples chosen

by a teacher. The teacher starts by providing the following statement to STUDENT (as in

Figure 1-1, (a)):

“Mary’s harming Sue leads to Sue’s harming Mary” is an example of «revenge».

From this example, STUDENT has already formed an initial model of what «revenge» might

look like—albeit a quite primitive one. When the teacher asks

Is “Mary’s harming John leads to John’s harming Mary” an example of «revenge»?
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STUDENT responds negatively (Figure 1-1, (b)). This is because STUDENT’s current belief

of «revenge» is exactly “Mary’s harming Sue leads to Sue’s harming Mary”, as given in the

first example.

In Figure 1-1 (c), the teacher declares that “Mary’s harming John leads to John’s

harming Mary” is indeed an instance of «revenge». Because STUDENT has now seen two

different people (Sue and John) as the retaliating party, STUDENT henceforth assumes that

any person can fit in that role. So, in Figure 1-1 (d) and (e), STUDENT confirms that the

candidates are both recognized as «revenge».

In Figure 1-1 (f), the teacher chooses an example that teaches STUDENT that the

instigator can be any person; this is confirmed in (g).

When asked if

“Mary’s harming Sue leads to Sue’s accidentally harming Mary”

is an instance of «revenge» (Figure 1-1, (h)), STUDENT responds yes, even though as a

human, you recognize that if Sue is accidentally harming Mary, it probably isn’t

«revenge». The teacher corrects this mistake (Figure 1-1, (i)), affirming to STUDENT that

“Mary’s harming Sue leads to Sue’s accidentally harming Mary”

is not an example of «revenge». Lastly, the teacher ensures that STUDENT has properly

learned about “accidentally” by confirming that STUDENT does not consider

“Alice’s harming Bob leads to Bob’s accidentally harming Alice”

to be an instance of «revenge» (Figure 1-1, (j)).

From a sequence of just four examples, the teacher has taught STUDENT what it means

to have revenge.

15



Figure 1-1: STUDENT can quickly learn a concept from just a few examples. In (b), (d),
(e), (g), (h), and (j) above, the teacher asks STUDENT whether a particular sentence is an
instance of «revenge»; STUDENT responds according to its current model of «revenge». In
(a), (c), (f), and (i), the teacher actually provides examples to STUDENT to help it learn
about «revenge».
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Chapter 2

Background: Setting the Stage for

Learning

In this chapter, I discuss past work that has formed the scaffolding underpinning

STUDENT’s success. In particular,

1. I introduce the Genesis System, a program that reads, understands, analyzes, and

tells stories. I also discuss Innerese, Genesis’ powerful internal story representation;

STUDENT takes advantage of this representation to manipulate concepts.

2. I introduce near-miss learning, a genre of algorithms that enable systems to learn

ideas from a series of successive examples provided by a knowledgeable teacher.

Then, I survey several systems that use near-miss learning to teach different types of

concepts and analyze story similarity.
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2.1 Genesis is a substrate for story understanding

The Genesis system is an ongoing research project of the Genesis group at the MIT

Computer Science and Artificial Intelligence Laboratory. The Genesis group holds that

story understanding is the key to human intelligence. As such, the goal of the Genesis

system is to create a human intelligence system that can read, understand, and generate

stories in English, modeling the way we humans can do the same. To achieve this goal,

Genesis must be able to do at least the following to a given story written in standard

English:

1. Tokenize and parse the story into a semantically-unambiguous form.

2. Transform the semantically-unambiguous form into some internal data structure

amenable to analysis; we call this internal representation Innerese.

3. “Read” the story via the Innerese structure and analyze it on the fly, applying rules

Genesis knows in order to make inferences, connect plot points, make judgments,

and explain events.

4. (For story generation) Transform Innerese into human-readable English; this is the

inverse of the first two steps.

2.1.1 Parsing a story

Genesis uses the START parser (Katz, 1993) to transform English text into a semantically-

unambiguous form; for each sentence, this form is a list of ternary expressions each of the

form

(subject relation object)

representing all of the semantic data included in the sentence. For example, the sentence

“John tenderly kisses Mary.” yields two triplets 1:

[(John kiss Mary),(kiss has_modifier tenderly)]

1 Technically, the START parse of most sentences yields far more than two triplets. However, most
indicate lexical relations such as (kiss has_person 3), and are irrelevant for this discussion.
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2.1.2 Transforming a story into Innerese

The semantically-unambiguous ternary representation is then converted into the Genesis

Innerese representation.

An Innerese bundle is a collection of threads, each describing a word-sense

The linchpin of Innerese is the bundle, a mostly-unordered set of threads which, together,

define the meaning of each word.

Genesis leverages Princeton’s WordNet (Miller, 1995) to get the set of possible threads

for a given token (word). Each thread is a semantic hierarchy of classes to which the

particular word belongs. For example, two possible threads for the token “dog” are:

◁ (thing entity [...] carnivore canine dog)

◁ (thing entity [...] person male chap dog)

Each different thread embodies a different word-sense for the token. In the example above,

the first thread for “dog” refers to the animal, and the second refers to the slang term for a

male human.

Many common words have far more than just two threads. For example, the word

“staff” has many threads, as illustrated in Figure 2-1.

The bundle is unordered except for a single, primary thread, called the primed thread.

The primed thread is the one that is often used during computation and analysis, as it

represents the most likely word-sense of the token. For example, the primed thread for

“dog” is often

(thing entity [...] carnivore canine dog)

because typically, in human speech and language, the word “dog” is meant to refer to the

animal.

Innerese comprises four types of recursively-defined objects

An Innerese expression is comprised of four types of Things, each defined recursively:

◁ Entity (ent): Any atomic object, value, or idea, such as laptop, red, or

happiness.
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Figure 2-1: Some words can have many associated threads. The word “staff” has eight
threads—eight different word-senses—associated with it. Two refer to actions (verbs), and
six refer to things (nouns). Some words can have up to ten or more threads (“release”),
while others might have just one thread (“however”).

◁ Function (fun): Suggests something derived from a Thing, such as top of

the table or with a knife.

◁ Relation (rel): Describes a connection or relationship between two different

Things, such as door beside window or John kisses Mary.

◁ Sequence (seq): An ordered list of any number of Things.

For example, the Innerese form of the English sentence “John tenderly kisses Mary.”

is:

(rel kiss (ent john)

(seq roles (fun object (ent mary))

(fun manner (ent tenderly))))

Each of the four types of Things has its own dedicated Java class, and all are under the

umbrella of Entity, as summarized in Figure 2-2. In particular,

◁ An Entity represents an atomic idea defined by a bundle of threads stored within

the object.

◁ A Function is an Entity with an added subject field.

◁ A Relation is a Function with an added object field.

20



Figure 2-2: Innerese statements comprise four types of Things: Entity, Function,
Relation, and Sequence. Function, Relation, and Sequence are all Java
subclasses of Entity, expressing various semantic information stored in addition to that
inherited from Entity.

◁ A Sequence is an Entity with an added elements field, enumerating all

components that comprise the Sequence.

Raw Entitys often describe nouns ((ent dog)), adjectives ((ent tall), and

adverbs ((ent tenderly)).

A Function typically has one of three purposes:

◁ Indicate the direct object of verb, e.g. (fun object (ent mary))

◁ Signal a prepositional phrase, e.g. (fun with (ent knife))

◁ Designate an adverb (“manner”), e.g. (fun manner (ent carefully))

The single argument to a Function is called the subject of the Function (even though

the subject can itself refer to a grammatical object!).

A Relation can be used to signal many things, including:

◁ A verb, e.g. (rel kiss (ent john) (seq roles ...))

◁ Entailment (causality), e.g. (rel entail (rel ...) (rel ...))

◁ Possession (ownership), e.g. (own (ent john) (ent car))

The two arguments to a Relation are called the subject and object.

A Sequence is used to structurally group multiple things in an ordered sequence,

though the order may not be semantically important. One common application for a
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Sequence is to encapsulate “roles” information from a verb, including the direct objects,

indirect objects, prepositional phrases, and adverbs. For example, the English sentence

"John carefully slices the cake on the table."

translates to

(rel slice (ent john)

(seq roles (fun object (ent cake))

(fun on (ent table))

(fun manner (ent carefully))))

in Innerese. However, Sequences also have a few other uses:

◁ Technically, any Innerese translation is enveloped in a Sequence of type “semantic-

interpretation”, indicating that the Innerese to follow is a semantic interpretation of a

sentence, not necessarily a faithful syntactic snapshot.

◁ Conjunctions (“and”) and disjunctions (“or”) use a Sequence of type “conjunction”

or “disjunction”, respectively, to enumerate each of the constituents.

The constituent items in the Sequence are referred to as the Sequence’s elements.

Figure 2-3 gives brief visual examples of the four types of Things.

2.1.3 Analyzing a story

Finally, Genesis can invoke common-sense and user-defined rules to find connections and

infer plot elements in a story. For example, suppose the following rule is provided to

Genesis:

If X kills Y, then Y becomes dead.

Then, if Genesis finds the sentence “John kills Sam.” in a story, it matches and applies the

rule, concluding that “Sam becomes dead.”

Higher-level concepts can also be defined for Genesis, not just “common-sense” rules

as above. Below, we explicitly define the concept of «revenge» for Genesis:

Start description of "revenge".

X is an entity.
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Figure 2-3: All Things are Entitys, each with different relevant information. Entity
objects are purely defined by their bundle. Functions also contain a subject, and
Relations have both a subject and an object. Sequences have neither a subject nor
an object; instead, they have elements, an ordered list of constituents.

Y is an entity.

X’s harming Y entails Y’s harming X.

The end.

Genesis can match this pattern to elements in a story. As such, if a story included the

following sentence,

John’s harming Sam leads to Sam’s harming John.

then Genesis would recognize this occurrence as an example of «revenge».
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2.2 Computers can learn from near misses

Winston successfully demonstrated the Principle of Quintessence in teaching a computer

system to properly recognizes basic structures such as houses, tables, and arches (Winston,

1970). To teach his system about a structure, he provides several successive examples to

the system; each teaches something new. Each example has two characteristics:

◁ The example is carefully selected by a teacher.

◁ The example is either (a) an instance of the structure being learned, or (b) a non-

instance of the structure being learned.

Importantly, if the example is a non-instance of the structure being learned, it is a “near

miss”: it doesn’t align with the system’s current belief of the structure’s description, but it

only differs in at most a few significant ways.2

Because each subsequent example almost aligns with the system’s current model, the

system can easily infer the important information that is presented in the example. So, the

system can learn something new at every step.

Winston’s near-miss learning paradigm has paved the way for several artificial

intelligence systems (introduced below) that benefit from teaching concepts requiring only

a few examples, so-called “small data”—in contrast to big-data systems which require

thousands or millions of examples.

I will briefly discuss some more recent work which builds on the principle of near

misses. When discussing near-miss learning systems in this section and in the remainder

of this thesis, I will often refer more generally to +positive and –negative examples:

◁ +Positive examples loosen restrictions on the system, teaching it what it is allowed

to do.

◁ –Negative examples enforce restrictions on the system, preventing it from doing

things it is not allowed to do.

2On the other hand, if the example is an instance of the structure being learned, and the model doesn’t
currently recognize it, the example is permitted to have any number of differences from the model.
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2.2.1 Klein introduces lattice-learning to learn characteristics of

entities

Some work with the Genesis system has used portions of Klein’s lattice-learning concept

(Klein, 2008), which is itself an application of near-miss learning. Klein uses

lattice-learning in his UNDERSTAND system, which can learn to recognize characteristics

of certain entities: for example, given just a few examples, UNDERSTAND can learn that

birds and aircraft can all fly, while other things like insects and boats cannot.

Lattice-learning can work with any kind of classification tree: by considering positive and

negative examples of some feature, with each example located at some position in the

classification tree, the system can permit entire regions of samples in the tree using nearby

positive examples, and the system can exclude entire branches from the tree based on

nearby negative examples. The classification trees used by Klein are informed by

word-sense threads (discussed in Section 2.1.2) supplied by Princeton’s WordNet (Miller,

1995).

2.2.2 Stickgold uses lattice-learning to disambiguate word-senses

Stickgold’s DISAMBIGUATE (Stickgold, 2011) applies the methods of lattice-learning to

finding similarities between multiple sentences. Once the similarity context is found,

DISAMBIGUATE can infer the semantically appropriate meanings from

possibly-ambiguous words, such as the noun “hawk” which may refer to either a bird or a

malicious person.

2.2.3 Krakauer aligns multiple stories by finding similar concepts

within

Krakauer attempts to compare multiple stories by finding similar templates or concept

patterns among stories that seem to match to the same high-level concept, such as

«revenge» (Krakauer, 2012). However, Krakauer approaches this problem with the goal of

assessing story similarity, not with the goal of teaching Genesis semantic concepts. As
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such, the system is designed to recognize structural similarity, not to learn incrementally

from various examples.
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Chapter 3

Pedagogy: Philosophy of Learning

Built into any artificial intelligence program, whether implicitly or explicitly, is a set of

assumptions that simplify the system or improve its efficiency. STUDENT is no different.

However, as a system that incorporates aspects of human communication, STUDENT can

take advantage of several rules that largely define how humans interact with each other:

◁ When humans communicate, they unconsciously abide by a set of principles

restricting what can be said and how it should be said. These principles, or maxims,

enable each person to make reasonably accurate assumptions about the pragmatics

of the statements at hand.

◁ Teachers and students implicitly agree to follow a set of guidelines when in a learning

environment: these guidelines, or tenets, facilitate the learning process.
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3.1 Humans adhere to four maxims of communication
One of my favorite short jokes goes like this:

A dad is washing the car with his son. After a moment, the son asks his father, “Do
you think we could use a sponge instead?”

Some would say that if a joke needs to be explained, it isn’t funny—but for the sake of

leveling the playing field, I will explain. In the joke, the word-sense of “with” is ambiguous,

as the object of the preposition (“his son”) could either refer to a co-agent (the father and

the son are both washing the car) or an instrument (the father uses the son like a sponge,

to wash the car). Naturally, most people reading the joke assume the child’s role is the

co-agent, until the punchline reveals that the child is an instrument.

Consider also this rather humorous interaction:

Ada and her husband John were watching TV one evening. Suddenly, Ada rose and
announced that she was retiring to the bedroom.

“Are you going to read or sleep?” John inquired.

“Yes,” Ada responded.

The punchline here isn’t about lexical ambiguity; it’s just that Ada answers the question

logically (“yes” or “no” to a logical OR) instead of pragmatically (“which one?”).

Both of these jokes poke fun at how humans communicate:

◁ In the first, the reader assumes a particular word-sense given that a fairly common

English sentence is presented, but then the following sentence subverts that

expectation.

◁ In the second, a fairly common “either–or” question is asked, but the recipient

chooses to answer in a way that is technically correct but semantically meaningless.

These jokes both demonstrate violations of the unspoken rules by which humans

typically communicate. Like many principles in the field of artificial intelligence, these

rules are all but obvious once codified, but they give us powerful ways to reason about

human intelligence and learning systems. These rules are formalized by Paul Grice and

commonly known as Grice’s Maxims (Grice, 1975):

1. Maxim of Quantity: Be informative. Give as much information as necessary, but no

more.
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2. Maxim of Quality: Be truthful. Say true things; don’t mislead or lie.

3. Maxim of Relation: Be relevant. Speak about topics at hand, not irrelevant things.

4. Maxim of Manner: Be clear. Don’t be vague or ambiguous.

Together, these four maxims describe the implicit contract by which we tend to

communicate. For example, when a person is asked a question, she typically responds

◁ with sufficient information;

◁ accurately;

◁ pertinently; and

◁ clearly.

STUDENT takes advantage of this contract—Grice’s Maxims—to enable it to learn

relevant information from each example.
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3.2 Teachers and students interact according to a

covenant

STUDENT takes advantage of Grice’s Maxims when making decisions about how to model

concepts. However, because STUDENT learns by ingesting examples that are carefully

chosen by a teacher, STUDENT can also take advantage of an additional contract: a set of

tenets that describe how students and teachers communicate. These tenets are largely based

on what VanLehn calls the felicity conditions for communication (Vanlehn, 1983). I will

refer to them en masse as the student–teacher covenant.

The student–teacher covenant describes how a student and teacher should interact, with

the assumption that the student wants to learn something, and the teacher wants the student

to learn something. Many of the tenets implicitly rely on Grice’s Maxims, but they are

all more specified to the context of learning. The tenets of the covenant that I consider

important to STUDENT’s success are explained below.

◁ The teacher only teaches things that the student already almost knows. A

calculus teacher introduces integrals not by giving a comprehensive sermon on

different strategies for computing integrals, but instead by motivating the intuition

for integrals via a topic with which the student is already familiar: visualizing areas

under curves.

“What is the area under this parabola?”

When the student realizes she has no tool (equation) in her toolbox to compute the

area, the teacher continues by approximating the area under the parabola as a series

of many thin rectangles—a tedious, yet fundamentally calculable number.

“What is the combined area of these twenty rectangles?”

Figure 3-1 demonstrates a humorous, if extreme, non-example of this tenet.

◁ The teacher gives information that is accurate and relevant. The information

taught by the teacher should obviously be accurate and not misleading in any way.

Supplying inaccurate information only impedes progress. Furthermore, information

given should be relevant to the topic at hand: off-topic or unrelated information, even

if technically accurate, does not help the student learn the material at hand.
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◁ The teacher gives examples that allow the students to learn. If a teacher provides

examples to strengthen the student’s comfort with the material, each example should

provide useful information to the student. For example, no two examples should be

the same, and no two examples should be contradictory.

◁ The teacher does not begin with edge-case or intentionally-confusing examples.

In learning a new topic, basic but general knowledge attained is far more valuable

than nuanced but mostly-unapplicable knowledge. For example, the following

example

“The area of this rectangle is 15 because its width is 3 and its height is 5.”

may not impart much generalizable knowledge on the student, but it is still likely

more helpful to the student than

“The area of this line segment is 0 because it’s technically a rectangle with width 0.”

even though the later example contains useful, nuanced information that may prove

useful sometime in the future.

◁ The teacher does not choose examples that coincidentally express irrelevant

characteristics. For example, when describing a rectangle, the teacher should not

choose a square as the first example:

“This is a rectangle. Its width is 2 and its height is 2.”

The student may ascribe relevance where no relevance is due, in this case, to the fact

that the height and width “must be equal,” which is decidedly false for a rectangle.

Similarly, if trying to teach about the color “red,” the teacher should certainly not, as

an example, write

RED
on the board using a red marker; such an example may cause the student to conflate

the orthographic symbol RED with the color itself.

◁ The student applies past knowledge to current topics. Knowledge does not exist

in a vacuum, and neither does the student. The student should use past knowledge to

help her understand new concepts.

◁ The student recognizes that concepts learned can be generalized. The student

does not assume that the material conforms exactly to the information provided by
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the teacher. For example, given two worked examples

“The area of this 4 by 2 rectangle is 8.”

“The area of this 3 by 7 rectangle is 21.”

the student should not assume that only those two rectangles can have their area

computed. (Perhaps the student can even assume that there is a pattern to how the

area is computed...)

◁ The student assumes that interesting characteristics expressed by examples are

relevant. If the teacher provides an example that expresses a non-trivial

characteristic, the student should assume there is a reason the teacher chose that

example. For example, in learning what a square is, if the teacher provides

“This is a square. Its width is 2 and its height is 2.”

as an example, the student should ascribe some relevance to the fact that the width

and height are the same.

◁ The student explains her thought process while reasoning. When thinking about a

concept, or trying to solve a problem, the student should give feedback to the teacher

in some manner, describing what she is thinking. If the student adheres to this tenant,

then if the student comes to a wrong conclusion, the teacher will realize why. Or, if

the student comes to the right conclusion, but for the wrong reason, the teacher will

realize why.

When reasoning about concepts, STUDENT takes advantage of all of these tenets. This

allows it to make more accurate logical deductions, and learn about concepts more

efficiently. However, it also puts STUDENT at the mercy of the teacher, who must follow

the covenant; if the teacher violates the covenant, STUDENT is likely to fail in creating an

accurate model of the concept.
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Figure 3-1: This comic from Abstruse Goose (AbstruseGoose, 2012) demonstrates an
extreme violation of the student–teacher covenant.
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Chapter 4

STUDENT: A Program that Learns

Concepts from Near Misses

STUDENT is a human intelligence program—so called because it seeks to emulate human

behavior—that can learn about concepts from a few near misses provided by a cognizant

teacher. At its core, it uses the paradigm of near-miss learning to generalize and specifize

particular aspects of its current belief of a concept, while also making decisions consistent

with Grice’s Maxims and the student–teacher covenant. STUDENT is built on top of the

Genesis System, using Genesis’ Innerese as an intermediate knowledge-representation to

facilitate concept instantiation and manipulation.

In this chapter, you will learn

◁ How the teacher and the client interact with STUDENT;

◁ How STUDENT represents concepts internally;

◁ How concepts are instantiated and manipulated;

◁ How near misses are determined; and

◁ How new examples of concepts are reconciled.
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4.1 STUDENT continuously updates its model of a concept

from provided examples

STUDENT interacts with users in the manner of an anytime algorithm. When a client

queries with a candidate for a concept, STUDENT will respond indicating whether it

believes the candidate embodies the concept, and also explaining how it reaches that

conclusion; but its concept model becomes more accurate as it learns more examples from

a teacher.

The teacher intentionally chooses examples that allow STUDENT to most effectively

learn from a small number of trials. Each example chosen is a near miss, an example that

just barely contradicts STUDENT’s current understanding of the concept’s model, forcing

STUDENT to learn from every single example.

In accordance with the covenant, STUDENT also gives feedback to the teacher,

explaining its thought process as STUDENT ingests new examples and tries to reconcile

near misses with the current belief state.

The interactions among STUDENT, the teacher, and the user are illustrated in Figure 4-

1.

To create an initial model for a concept, STUDENT constructs it from a ♣seed example

carefully chosen by the teacher in accordance with the Principle of Relevancy. This seed

is directly translated into the STUDENT’s inner representation, and is assumed at that point

in time to exactly embody the concept in question. For example, to initialize the model for

«harm», the teacher may choose to start by supplying

♣John harms Mary.

as the seed example. Henceforth, STUDENT assumes that «harm» is exactly defined as

harm =⇒ John harms Mary.

until it receives further examples from the teacher.

The teacher may choose to supply any number of additional examples to further fine-

tune STUDENT’s belief of the concept. After the seed, every subsequent example 𝜉 has

associated with it a charge, which is either
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Figure 4-1: STUDENT learns from the teacher, and can respond to the user’s queries.
The teacher intentionally chooses near-miss examples to guide STUDENT’s creation of the
concept model; STUDENT explains itself as it reconciles new examples with the model.
The user can ask STUDENT if a particular candidate is an instance of a concept; STUDENT

responds indicating yes or no, additionally explaining how it came to that conclusion.

◁ +positive, indicating that this example should be permitted (recognized) by the model

as an instance of the concept; or,

◁ –negative, indicating that this example should be rejected by the model: it should not

be considered an instance of the concept.

The new example 𝜉 may have a charge that is consistent with the current model’s

prediction for 𝜉, described by one of the following two situations:

◁ 𝜉 is a +positive example and STUDENT’s concept model permits 𝜉.

◁ 𝜉 is a –negative example and STUDENT’s concept model rejects 𝜉.

In either case, 𝜉 does not give STUDENT any actionable information, because 𝜉 is already

fully consistent with the model.

On the other hand, if 𝜉’s charge is opposite of the model’s prediction for 𝜉, this

indicates a possible opportunity to learn new information—and to reconcile STUDENT’s

belief with that new information. However, in order to learn something new from an

example, STUDENT requires that 𝜉 is a near miss: 𝜉 must be nearly consistent with the

model, so that it is obvious exactly how 𝜉 can be reconciled with the model. In

particular,
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◁ if 𝜉 is a +positive example: STUDENT’s model must just barely reject 𝜉—there must

be exactly one change that can be made to the model to cause it to permit 𝜉.

◁ if 𝜉 is a –negative example: STUDENT’s model must just barely permit 𝜉—there must

be exactly one change that can be made to the model to cause it to reject 𝜉.

If 𝜉 is not a near miss, then STUDENT fails to learn anything, and reports such to the teacher.

This definition of near miss is a bit different from that used by Winston. Winston’s

program can learn from any +positive example, generalizing along all differing aspects,

while it can only learn from –negative examples that are near misses. STUDENT, on the

other hand, can only learn from a near miss in either case. I believe that enforcing this

restriction on STUDENT more accurately emulates how teachers provide examples to

students, only changing one primary aspect of the example at a time.

Once 𝜉 has been confirmed to be a near miss, STUDENT can incorporate 𝜉 into its belief,

updating the model for the concept. If 𝜉 is a +positive example, then STUDENT generalizes

its model, permitting more varieties of candidates as instances of the concept. If 𝜉 is a

–negative example, then STUDENT specifizes its model, forbidding formerly-permissible

examples in its model-space and pruning the space of permissible candidates.

STUDENT’s general control flow is summarized in Figure 4-2.
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Figure 4-2: STUDENT initializes its belief (model) of a concept from a ♣seed example first
supplied by the teacher. Subsequent examples given by the teacher must be near misses
(if they are not, no action can be taken to update the model). Such examples can either be
+positive or –negative near misses. A +positive near miss is one that is not permitted by
the current model, but the teacher claims it should. A –negative near miss is one that is
permitted by the current model, but the teacher claims it should be forbidden.
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4.2 A concept model is a semantic tree with local and

global constraints

Genesis’ inner language, Innerese, represents all Things as instances of Entity, or some

subclass thereof (Section 2.1.2). A story is hence fully-defined by a sequence of Entitys,

each one representing (roughly) a sentence.

Because all Entity-like objects are recursively defined, it is only reasonable that a

concept’s model, which seeks to embody the required structure and content of permissible

Entitys, is also hierarchical in structure. Therefore, the vast majority of the information

describing a concept is stored in a class called ConceptTree, which is a recursively-

defined tree that is explained in much more detail in Section 4.3.3.

Because a ConceptTree is a recursively-defined tree, each node, corresponding to

an Entity, can only encode local information relevant to the node (and perhaps its

children and parent). This structure format is sufficient to describe node-specific

conditions that constrain things like the word (thread) and type of children, but isn’t

well-suited to describe global information that constrains nodes in relation to other nodes,

such as “nodes must-be-same” or “nodes must-be-different”. For this reason, an

encapsulating class called ConceptAuthoritree is used to package the rooted

ConceptTree; it administers the global constraints—also referred to as structural

constraints—that externally constrain sets of different nodes. The

ConceptAuthoritree is the authoritative record of the full concept’s model.

As shown in Figure 4-3, STUDENT stores the entire reasoning system, including the

ConceptAuthoritree, in a class surprisingly called ConceptModel. The

ConceptModel:

◁ Stores the record of the concept itself (the ConceptAuthoritree).

◁ Facilitates interaction between the client and the model.

◁ Maintains the full history of examples from the teacher.

The reason that the ConceptModel maintains a history of examples is so that the

teacher can inquire about misunderstandings stemming from previous examples if

necessary. Furthermore, future plans for STUDENT include the ability to reconcile past
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Figure 4-3: The ConceptModel stores the sequence of all examples given by the teacher,
in addition to the ConceptAuthoritree which is the definitive, authoritative record of
the concept itself. The ConceptAuthoritree maintains the global constraints that
limit how different nodes of the recursively-defined ConceptTree interact, if at all.

examples as soon as they become reconcilable, if they weren’t near misses at the time they

were provided by the teacher.
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4.3 A detailed look into STUDENT’s inner workings

In this section, I will discuss the structure of the primary classes comprising STUDENT.

First, I will motivate the discussion with a simple example.

4.3.1 A simple example

The atomic unit of a concept is the individual token, or word. Associated with each word is

a bundle of threads representing the various word-senses associated with that word. Each

node of the concept tree keeps track of which threads are and are not permissible in order

for a candidate to match the concept.

Consider the following sequence of examples provided to STUDENT to teach the

concept «consume-food»:

+Mary eats food.

+John eats food.

From these two examples, STUDENT concludes that «consume-food» must be defined

roughly as:

Any person eats food.

To understand at a high level how STUDENT infers this model, first observe the primed

threads associated with each of the words “mary”, “john”, “eat”, and “food”, illustrated in

Figure 4-4.

Next, Figure 4-5 shows the basic tree structures of the two +positive example

sentences. The tree structures only differ in one way: the subject node of the trees are

different. STUDENT then attempts to reconcile that difference by first checking if the

nodes themselves only differ in one way: in this case, they do, because the only difference

between the nodes is the primed threads associated with each.

Figure 4-6 illustrates how STUDENT reconciles the two different subject nodes by

comparing their primed threads. STUDENT finds that the semantic class “name” is

common to both primed threads, and is in fact the lowest (most specific) common class

between the two threads. As a result, STUDENT changes its model to indicate that any

node whose primed thread contains class “name” will be permissible.
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Figure 4-4: Each node in a concept pattern has a primed thread associated with it. Shown
are the primed threads associated with the four tokens “mary”, “john”, “eat”, and “food”
respectively. Note how those for “mary” and “john” are very similar. STUDENT will soon
take advantage of their similarity to reconcile them together as a single atom.
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Figure 4-5: Two examples that differ in one key way can be reconciled. These two +positive
examples differ only in the subject node. The two subject nodes themselves only differ in
the token (that is, they differ in the primed threads associated with each), so STUDENT

will now try to formalize a reconciliation between the two nodes to generalize its model of
«consume-food».
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Figure 4-6: Two examples whose spools differ can be reconciled. STUDENT needs to find a
way to reconcile these two differing nodes: it examines the primed threads associated with
the two nodes, and finds that they share a common class “name”. As a result, STUDENT

generalizes the model at that node and now permits any candidate whose subject node is a
token whose primed thread is “name” or any subclass thereof.
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4.3.2 A Spool maintains a tree specifying permissible and forbidden

words.

To formalize the concept of “keeping track of similar threads,” I use a class called Spool,

so called because it represents a collection of intertwined threads. Conceptually, a spool

can be thought of as a tree formed by combining similar segments of different threads (in

the style of Figure 2-1). However, a spool is a bit more complicated than that, because

◁ the spool must indicate which lowest-common-class specifications are permitted for

the concept, and which are forbidden; and,

◁ STUDENT must be able to distinguish between +positive and –negative examples

which impose generalization and specifization constraints on the threads.

Spiritually, a spool is in some regards a fancy reification of a lattice-learning system

as described by Klein (Klein, 2008) or Stickgold (Stickgold, 2011). However, the critical

difference here is that the spool is only one small part of the data structure that encodes a

concept model. Each concept will have many different spools associated with it, in addition

to considerations for the structure of the concept itself.

To explore the properties of Spools and expand on the above statements, consider first

the concept model for «consume-food» resulting from a single seed example

♣Mary eats food.

The concept model now believes that the definition for «consume-food» is exactly

consume-food =⇒ Mary eats food.

Given this model, would you expect “Mary eats matter.” to be considered a manifestation

of «consume-food»? No, of course not—even though “matter” is listed as a class in the

primed thread for “food”! In other words, at this point in time, the model only accepts the

most specific class possible for each of the threads.

The spool for the object node of this concept tree encodes exactly this information: it

recognizes that a candidate whose object’s primed thread is at least as specific as “food”

should be permitted; otherwise, it should be rejected, as visualized in Figure 4-7. One

important conclusion from this is that, during example reconciliation, a ♣seed example

is treated as a +positive example, because the seed gives initial information on what is
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permissible for a concept. This is a strict requirement in STUDENT’s interaction:

The first (♣seed) example must demonstrate what is permissible.

To begin teaching a concept by giving a non-example would violate the Maxim of Quantity.

After all, if someone asked you “What is a pickle?”, you (probably) wouldn’t respond by

asserting

“A pickle is not an ostrich.”

Spool updates become more complicated as the teacher supplies more examples. In

general, STUDENT approaches permissibility conservatively, only permitting classes that

have been directly or indirectly permitted; classes about which STUDENT has no

information are assume to be forbidden. To determine if a thread class is permissible, the

spool asks the following questions:

1. Is the class a terminal class? If so, then it was explicitly provided as an example

by the teacher. Mark it as permissible if it was a +positive (or ♣seed) example, and

mark it forbidden if it was a –negative example.

2. Otherwise, are any terminal descendant nodes of this class –negative terminals? If

so, mark this node as forbidden. If not, mark this node as permissible.

Figure 4-8 describes a more complicated interaction. At top, we see the four spools

corresponding to four given examples: in order, ♣mary, +dog, –rock, –robin.

1. STUDENT begins by initializing the model to mirror ♣mary.

2. Then, STUDENT reconciles the next example, +dog, with the model. It finds the

common class “organism” and generalizes the model, assuming that any organism is

permissible.

3. When reconciling the third example, –rock, nothing actually happens, because the

common class is “object” which was already marked forbidden by default.

4. When reconciling the fourth example, –robin, STUDENT puts more import on recent

restrictive constraints, re-forbidding “organism” and “animal” because they both

have a –negative descendant terminal, “robin”.
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Figure 4-7: A spool formalizes permissible and impermissible minimal classes of a node’s
primed thread. On the left is the primed thread associated with “food” from the seed ♣Mary
eats food., and on the right is the spool form of that thread: any candidate whose primed
thread is at least as specific as “food” (indicated with a +, because it was supplied as an
effective +positive example) is permitted; all others are rejected (indicated with a ).
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Figure 4-8: A spool can reconcile both positive and negative examples. At top, we see
the four spools corresponding to four given examples. New examples are reconciled
conservatively; sometimes, –negative examples override the permissibility of certain nodes
in the spool.
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4.3.3 A ConceptTree is an augmented Entity

Because the Genesis system internally represents Things as recursively-defined trees, so

does STUDENT. A ConceptTree takes the important aspects of an Entity and retains

them, and ignores fields that are largely irrelevant in the context of concept recognition

(various annotations, identifiers, etc.).

Unlike Entitys and subclasses thereof, every ConceptTree instance has subject,

object, and elements-like fields, though they may be null if not applicable. For example,

an atomic entity like “happiness” has subject, object, and elements all null, whereas a

relation like “harm” has subject and object non-null, with elements still null (because

“harm” isn’t a Sequence-type). I made this design choice because there is power in

treating all concepts (Things) equally, allowing STUDENT to easily manipulate all nodes of

a concept tree, and allowing general discussion of each atom of a concept.

Rather than storing the elements associated with a Sequence, a ConceptTree must

be more general: it must also be able to indicate forbidden sequence elements, as well as

optional sequence elements. For example, if «physical-activity» is defined as

physical-activity =⇒ John throws Mary.

then it doesn’t make sense to reject a candidate like “John throws Mary into the air.”, as this

is exactly the same but only with additional information! Hence, the concept model must

know that some functions are optional—such as the function “into the air”.

On the other hand, consider the following sequence of two examples defining «physical-

activity»:

♣John throws Mary.

–John throws Mary under the bus.

The second example, –John throws Mary under the bus., is likely an idiom meaning that

John betrays Mary; it is probably not implying that John literally tosses Mary underneath

a vehicle. Hence, it is not a case of «physical-activity». With this example, STUDENT

now knows to forbid a candidate that has the function “under the bus”. This illustrates a

situation where it is also important to maintain a record of forbidden elements.
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In total, each ConceptTree node maintains a record of what types of elements are

required, forbidden, or optional; I refer to these three types of constraints as the

existence qualifiers, or just qualifiers for short. However, for ease of computation and

generality, a ConceptTree doesn’t actually associate full functions with each of the

qualifiers: instead, it just specifies the spool of the rooted function node that is associated

with the qualifier. In the above example, therefore, the three qualifier mappings are as

follows:

required: {object}

forbidden: {under}

optional: everything except {object,under}

That is, an “object” is required; any prepositional phrase with preposition “under”

(technically, any function with role “under”) is forbidden; and anything that is not an

“object” or “under” is optional.

The qualifier mappings has one important invariant: each role (e.g. “under”) is

associated with exactly one of the three qualifiers. This makes sense intuitively, as

something cannot be (say) both forbidden and optional, but it has some repercussions as

will soon be discovered.

Importantly, the node separately maintains a table mapping each role to the

structure of ConceptTree that must be satisfied: these maps are stored in fields

called reqElePatterns (for required functions) and optElePatterns (for

optional functions). For consistency and possible future extension, there is also a

corresponding frbElePatterns, but STUDENT actually just rejects any candidate that

has a role matching a forbidden spool; the candidate’s role function is not checked against

a ConceptTree.

In the example above, the three fields look like:

reqElePatterns: {object: ConceptTree("object Mary")}

frbElePatterns: {under: (any ConceptTree)}

optElePatterns: {}
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Note that frbElePatterns doesn’t ascribe any particular structure to the “under” role,

as STUDENT will automatically reject any candidate that expresses any “under” function

whatsoever. Observe also that optElePatterns is empty: this is because all of the other

roles are implicitly optional; STUDENT only assigns concept tree structures to explicitly-

defined roles.

In general, when comparing a candidate to the concept model,

◁ For each role function the model requires, the candidate must have that function and

it must match the ConceptTree associated with that role. That is, candidate

“John throws Mary.”

would match the model described above, but candidate

“Mary throws a rock.”

would not, because even though the role “object” is present, the ConceptTree

associated with that function does not match the ConceptTree on record for

“object”.

◁ For each role function the model forbids, the candidate must not have any function

with that role, regardless of the underlying ConceptTree structure for that node.

For example, candidate

“John throws Mary under the stars.”

would still be rejected, even though the ConceptTree associated with “under the

stars” does not match the one associated with “under the bus”.

◁ For each role function the model lists as optional, the candidate may or may not

have a function with that role. However, if the candidate has a function with that

role, it must match the ConceptTree associated with that role. For example,

candidate

“John throws Mary into the pond.”

would be permissible, because it introduces an optional role (“into”) for which the

model has no explicit model.

There are two drawbacks to this overall design choice:

1. It forces a role to be “either required or forbidden” or “either optional or forbidden,”

as any required or optional role may still be denied if it does not match the model
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concept tree on record. It does not allow the model to differentiate between required

and optional functions for a particular role.

2. It does not permit any flexibility for forbidden roles. Once a role is forbidden, it

is impossible for any function with that role to ever be permitted. This isn’t an

accurate emulation of true concept learning, as there are often exceptions to forbidden

statements.

That having been said, I believe this design choice offers a reasonable compromise between

fidelity, generality, and speed.

To summarize, each ConceptTree has the following fields:

◁ spool: the Spool associated with this node

◁ subject: the subject of this relation/function (another recursively-defined

ConceptTree)

◁ object: the object of this relation (another recursively-defined ConceptTree)

◁ not (not discussed): a flag indicating if there is a “not” modifier attached to this

node. For example, in “does not harm”, the node associated with “harm” has its not

field indicating a negation.

◁ existenceQualifiers: The spiritual successor of “elements”. Indicates what

role functions (formerly, elements) are required, forbidden, and optional.

◁ reqElePatterns: Of the required roles, records the format of concept tree that

must be satisfied.

◁ frbElePatterns: Of the forbidden roles, records the format of concept tree that

must be satisfied. STUDENT doesn’t currently use this field, but it’s included to make

it easier for a future version of STUDENT to take advantage of it.

◁ optElePatterns: Of the optional roles, records the format of concept tree that

must be satisfied.

4.3.4 The ConceptAuthoritree affirms global constraints

The ConceptAuthoritree is an envelope class for the ConceptTree. Its primary

purpose is to enforce global constraints among multiple nodes of the concept.
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Suppose the following two examples are provided to describe «self-harm»:

♣Mary harms Mary.

+John harms John.

Recall, in the discussion of the student–teacher covenant (Section 3.2), that the teacher

should not choose examples exhibiting certain characteristics unless such characteristics

are relevant; furthermore, the student should assume that certain characteristics illustrated

in an example are relevant to the concept at hand. Pursuant to these tenets, STUDENT

assumes there is a reason that the provided example ♣Mary harms Mary. has the same

(grammatical) subject and object. Upon seeing that those nodes are equal, STUDENT

enforces a must-be-equals relation between them, as illustrated in Figure 4-9. Upon

receiving the second example, +John harms John., STUDENT reconciles it as expected,

generalizing both nodes to “name” while continuing to require that they be equal.

Similarly, imagine the opposite situation, where the teacher first provides a ♣seed

example priming the model, then a –negative example enforcing additional constraints on

the model. Consider the following sequence of four examples provided by the teacher to

teach the concept «harm-someone-else»:

♣Mary harms John.

+Mary harms Sue.

+John harms Mary.

–Mary harms Mary.

STUDENT’s thought process is explained below:

◁ ♣Mary harms John.: Concept model is initialized. STUDENT believes that «harm-

someone-else» is exactly defined as “Mary harms John.”

◁ +Mary harms Sue.: Concept model generalizes the grammatical object. Now, Mary

may harm any person.

◁ +John harms Mary.: Concept model generalizes the grammatical subject. Now, any

person may harm any person.

◁ –Mary harms Mary.: STUDENT is told that “Mary harms Mary.” is forbidden, even

though it appears to match the current model belief. STUDENT therefore assumes
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Figure 4-9: The ConceptAuthoritree enforces global constraints between concept
nodes. At top, you see the full concept tree corresponding to ♣Mary harms Mary.; I have
annotated each node with the type of Entity it emulates, though the true ConceptTree
does not store such information explicitly. STUDENT asserts that, because the ♣seed
example has two equal nodes (nodes with the same spool), the model should require the
nodes to always be equal. Upon receiving the next example, +John harms John., STUDENT

reconciles them as expected, maintaining the must-be-equal global constraint.
In this figure and in future figures, Ω refers to the full universe, and \ is the set-difference
operator. For example, Ω∖{𝑥} represents “everything except 𝑥”.
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that there must be relevance to the fact that the grammatical subject and object are

identical. To reconcile the model with this new example, STUDENT adds a restriction

to the model, forbidding any situation where the grammatical subject and object of

“harm” are the same.

I have demonstrated two different situations where STUDENT properly heeds structural

constraints alluded to by the teacher’s well-chosen examples.

4.3.5 The ConceptAuthoritree oversees model transformations

The ConceptAuthoritree additionally oversees the incorporation of new examples

into the model. In order to reconcile a new example with the current model, STUDENT

must determine

1. if the new example is a near miss, and

2. if so, how to transform the model in a way to incorporate the new example.

It is not straightforward to determine if a new example is a near miss. Both the concept

model and the example candidate are represented as complicated, recursively-defined

trees; the trees must be compared in a way that highlights and quantifies their principle

differences. If there are too many differences, STUDENT should conclude that the example

is not a near miss. So, two questions must be addressed:

1. What exactly is a near miss? In particular, what types of maximal differences

between trees should be permissible?

2. How are these differences to be found?

To answer both of these questions, I first experimented with some dynamic programming

tree-difference algorithms. I quickly found that these algorithms grew too complicated as

the definition of near miss became more nuanced (such as when multiple nodes can change

at the same time when reconciling global constraints, as in Section 4.3.4).

Instead, I decided it was best to flip the problem on its head: instead of using a

dynamic programming algorithm to find differences between trees, STUDENT should

search through a concept-tree-space, applying all permissible

“differences”—transformations—to the current model tree until the candidate is found. If

56



the candidate is never found, STUDENT can conclude that the candidate is not a near miss.

This tree-space search is a brute-force search in spirit, but in style it is a branch and

bound search. The search proceeds as follows:

1. Initialize the search agenda with the path containing just the current concept model’s

tree.

2. Pop the next best path from the agenda.

3. Extend the current path by applying each of the different transformation types to the

most recent tree on the agenda, but only if the transformation cost so far isn’t “too

high.” Put these new paths onto the agenda.

4. Repeat steps 2-4 until the agenda is empty (indicating the candidate is not a near

miss) or the candidate tree is found (indicating the candidate is a near miss).

To improve efficiency, the search implicitly ignores loops and uses an extended set to avoid

exploring already-explored trees.

I have defined eight different permissible transformations—ways to atomically

transform a tree into a different tree—outlined in Figure 4-10. Associated with each

transformation is a cost, indicating how different the tree is after applying the

transformation. The cost of a sequence of transformations is the sum of the costs of each

individual transformation; STUDENT designates a maximum-permissible

transformation-path-cost of 1, suggesting that a near miss is “at most a cost of 1 away

from the current model.” In the style of branch and bound, the search always explores the

path with the lowest transformation-path-cost-so-far. Figure 4-11 and Figure 4-12 give

some examples of transformations, and Figure 4-13 illustrates a situation where the search

is enacted but concludes that the candidate is not a near miss.
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◁ change-spool (0.98): Changes the spool of a particular node to a different spool.
◁ change-spools (0.99): Changes the spools of two (or more) must-be-equals

nodes to a different set of equal spools.
◁ toggle-not (1): Flips the not flag on a particular node.
◁ swap-subject-object (1): Swaps the grammatical subject and object of a verb

(not the Relation’s subject and object).
◁ add-element (1): Adds a new element to a sequence-like node by changing it

from forbidden to optional.
◁ remove-element (1): Removes an element from a sequence-like node by

changing it from required to optional.
◁ change-element (1): Changes an element to a different element in a sequence-

like node.
◁ expand-sequence (0.2): Turns a non-sequence-like concept node into a

sequence-like node, inserting the former ConceptTree associated with the node
as the sole required element of the newly-created node. This is theoretically useful
when manipulating concepts that introduce (say) conjunctions in new examples, but
hasn’t seen much use in practice. See Figure 4-11 for an example.

Figure 4-10: A near miss is a candidate that can be created by transforming the current
model’s ConceptTree only a certain number of times. The eight ways to transform a
ConceptTree, and their associated costs, are shown above. If the ConceptTree can
be transformed into the candidate via a series of transformations whose total cost is at most
1, the candidate is considered a near miss. Otherwise, the candidate is not a near miss.

Figure 4-11: The expand-sequence transformation allows concept generalization for
a particular concept node. Once a node has been expanded to a sequence, it may be easier
to transform or match it against other similar sequences.
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Figure 4-12: Different types of transformations allow different types of near misses to
be reconciled. On top, the remove-element transformation is used to remove a
required “with” function; the “with” function is now optional. (The optional box indicates
that everything except “object” functions are optional; furthermore, any present “with”
function must match the concept pattern given.) On bottom (for visual clarity, optional
and forbidden fields are not shown), the change-spool transformation allows the verb
“harm” to change into “hug”.
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Figure 4-13: Sometimes, the search finds that the shortest transformation path is too
costly, and concludes that the candidate is not a near miss. In this example, trying to
reconcile “Mary harms Bob.” with “John harms Sue.” yields disastrous results. (For visual
clarity, in the trees shown above, optional and forbidden fields have been hidden.) The
only transformation path between these two trees is a sequence of two change-spool
transformation paths, resulting in a total cost of 2. STUDENT concludes that “John harms
Sue.” is not a near miss.
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Chapter 5

Contributions

Successfully teaching a system how to learn concepts by example is a large step towards

understanding how to make human intelligence systems that can understand stories,

because understanding new and emerging concepts is a large part of story understanding.

Minsky briefly entertained the notion of the baby-machine, a system that could simulate a

newborn baby learning about the world from physical stimuli and context clues without

requiring manually-inputted common sense and idea definitions. Teaching a system to

learn and reason on its own, by example, is a step in the direction of the spirit of this

baby-machine.

With the arrival of STUDENT, Genesis is no longer reliant on hard-coded,

manually-defined definitions of concepts; instead, a cognizant teacher can supply several

examples of a concept to give Genesis an ostensive definition of the concept. Furthermore,

creating a system that learns concepts by example opens up the possibility for “creative

misunderstanding,” where a machine learns a different definition of a concept from what

the human teacher originally intended, but it ends up being a better definition of the

concept. This is an important capability because it no longer puts the onus on the human

to perfectly define everything—instead, the system can make decisions for itself.

In a way, STUDENT’s example-oriented paradigm means that the user has to put in more

work than before to teach a concept: providing several good examples of a concept may

be more tedious than writing down a direct definition. However, the trade-off is that the

burden is no longer on the user to design a perfect and exact definition of the concept. This
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is a powerful compromise, as it is much easier for two people to agree on some examples

of a concept than to agree on the exact definition of the concept. With STUDENT’s effort,

the guesswork is taken out of the hands of the human, and is instead provided as organic

learning stimuli to the human intelligence system.
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